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Abstract 

The equations of conformal Killing transport are discussed using tensor and spinor 
methods. It is shown that, in Minkowski space-time, the equations for a null conformal 
Killing vector [a are completely determined by the corresponding spinor ~A and its 
covariant derivative, which defines a spinor ~rA'. In conformaUy flat space-time, the 
covariant derivative of ~r A' is also involved. Some applications to twistor theory are 
briefly mentioned. 

1. Conformal Transformations and Confbrmal Rescalings 

Let M be a differentiable manifold with metric tensor g. A conformal 
transformation from M into itself is a C ~ map f where f :  M-+ M, and 
f *  g = f22 g, ~2 being a smooth, real-valued, positive scalar funct ion on M; 
if ~2 = 1, then f i s  an isometry. In the case of Minkowski apace-time, all 
transformations of coordinates which transform the Minkowski metric* Tab 
into a metric gab, where gab = ~22~ab, form a 15-parameter g roup- the  con- 
formal group of Minkowski space-time; this group contains the Poincar6 and 
Lorentz groups as subgroups. In fact, the conformal group mentioned here 
more correctly gives the symmetries of a compactified Minkowski space-time, 
consisting of Minkowski space-time itself together with a null cone at infinity 

2 2 2 2 2 (Penrose, 1967), since under the inversion ds -+dg = ~2 ds , where ~2 = 
a 2 a 1/(x Xa) , the null cone at the origin is sent to infinity (x is the position 

vector of a point  x with respect to the origin). All transformations of the 
conformal group can be obtained from space and time reflections together 
with the transformations of the restricted conformal group- this  last being a 
15-parameter Lie group, generated by the infinitesimal conformal transform- 

* The abstract index notation is used; lower case Roman indices denote tensors, upper 
case Roman indices (primed or unprimed) denote spinors, and Greek indices denote 
twistors; components in some basis are denoted by bold face indices. 
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ations x a -~x  a + e~ a, where e is an infinitesimal parameter and ~a is a conformal 
Killing vector which satisfies the conformal Killing equation: 

£ ~gab = Ogab (1.1) 

Here $ is a scalar function on the manifold; the condition for an isometry 
now is that $ = O, in which case the equation is called Killing's equation and 

is a Killing vector; if ~b is a constant, a homothetic transformation is defined. 
The set CK(M) of all conformal Killing vectors on a manifold M forms a Lie 
algebra over R, and the set of all Killing vectors K(M) on M is a subalgebra 
of CK(M). The following result is well known: The group of conformal trans- 
formations of an n-dimensional Riemannian manifold is a Lie transformation 
group of  dimensiori at most ~(n + l)(n + 2), provided that n>~ 3 (Kobayashi 
& Nomizu, 1963). 

A conformal rescaling of the metric tensor gab on a space-time M is a 
transformation o f  gab, thus 

gab -'~ gab = ~'22 gab 

also 

gab ~ a b  = ~2-2 gab (1.2) 

These transformations form an infinite-dimensional Abelian group, which 
preserves angles between vectors and the null-cone structure of the space- 
time. 

a . . ' c .  
A tensor Ab. . . a  is said to be conformally invariant if it is invariant under 

(1.2), i.e., 
a " ' ' C  A a  - * - c  a - , , c  

A b . . . a - ÷  Ab . . .a = A b . . . a  

a ' " c  
A tensor Bb. . -a  is said to be a conformal density of weight N if, under (t .2), 

a ' ' ' C  ^ a ' . . c  a . - . c  
Bb ..a -+ Bb . . .d  = ~-,~N Bb "d  

(the metric itself is thus a conformal density). A flat space-time theory which 
is conformally invariant and also Poincar6 invariant is then also invariant 
under the 15-parameter conformal group, since Poincar6 transformations of 
Minkowski space-time become conformal transformations according to a 
conformally rescated flat metric. 

2. Conformal Killing Transport 

Let M be a connected pseudo-Riemannian manifold with metric gab ; the 
conformal Killing equation may then be written*: 

V (a ~b) = (/)gab 
where 

q~ = ( l /n)  Va~ a, n = d i m m  

* Round brackets denote symmetry, square brackets denote skew symmetry. 

(2.1) 
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Also, by commutation of derivatives and using the properties of the curvature 
tensor and the Bianchi identities, it follows that 

V a ~b = Fab + cpgaa ; Fab = F[ ab ] 

v~¢ = K.  
(2.2) 

V~Fb~ = Rb~,,a~ a - 2gatbK~ 1 

VaKb = ~aVaPab + 2ckPab + 2Pa(aFb) a 

In these equations Pab = (1/2) Rab - (1/1 2) Rgab. Hence for any curve y through 
a point x E M, with tangent vector 77 a, 

rl a Va~b = rla{Fab + (Pgab} 

rt a Va¢ = rla{Ka } 
(2.3) 

rl a V aFbe = rla {Rboaa~ d -- 2gat t, Kc ] } 

rl a VaKb = rla{~ d gclPab + 2¢.Pab + 2Pcl(aFb) d } 

These equations are called the conformat Killing transport equations (Geroch, 
1969); they define the quadruple (~a, $, Fab, Ka) along the curve y through x, 
the quadruple being given at x. Let V denote the ½(n + 1)(n + 2)-dimensionaI 
space of all quadruples (~a, $, Fab, Ka) at x; a conformal holonomy group 
can be defined at x - th i s  being the group of all linear transformations on V 
obtained by conformal Killing transport of the quadruple (~a, ¢, Fat,, Ka) 
along each closed curve y starting at x - t h e  quadruples which are mapped 
into themselves under this group of transformations correspond to the 
conformal Killing vector fields on 214. 

A set of Killing transport equations can be obtained from (2.3) by putting 
~b = 0 in these equations; the result is 

"r'l a Va~b = "fla(Fab } 

,Fla VaFb c a d (2 .4 )  = rl (Rbcad~ } 

and in this case ~a is a Killing vector. 
In what follows it will be convenient to introduce the Weyl conformal 

tensor Cat,cd and to define the vector pa = Ka - Pad~ a. The equations (2.3) 
then become 

"Qa ( V a~b } = r?a { Fab + Cgat, } 

"t'la{ Vaq)} = ,t..laQga + Pad~ d}  
(2.s) ~arv F ~ a~c  ~.cl \ a bc~='Fl t bcadg -I" 2 P a [ b ~ c ] -  2ga[bpo] 

rla( VaPb } = rla{~ d VIaPala + CPat, + PaaFb ct } 

and this last can be rewritten: 

r7 a( VaPb ) = rla(~ a V x Cxbaa +(oeab + ectaFb a } 

since V [dPalt, = v x  cxt,ea. 
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3. Solutions in MinkowsM Space-time 

In Minkowski space-time n = 4, and Rabca = 0. The conformal Killing 
transport equations are then much simplified and can be written 

Va~b = Fab + egab 

Va¢ = Pa 

VaFac = --2ga[bPc] 

VaPb = 0 

(3.1) 

Also Pa = Ka since Pab = O. Introducing a Minkowski coordinate system 
{xa}, the equations can be successively integrated, beginning with the last, 
as follows: 

Pla = POa 

Flab = Foab -- 2X[aPOb I (3.2) 

¢1 = ¢o + xapoa 

~1 a = ~O a + Fobax b + ¢0 Xa + xa(xbpob)  

- -~eoa(Xbxb)  

where x a is the position vector of xl  with respect to the origin 0, and 
(~o a, ¢o, FOab, POa) and (~1 a, ¢1, F1 ab, P la) are the corresponding values 
of the quadruple (~a, ¢, Fab, Pa) at the points in question. In the set of 
equations (3.2), ~o a defines the translations (four parameters) and Foab 
defines the Lorentz transformations (six parameters); also ¢0 defines the 
dilations (one parameter) and Poa defines the so-called "uniform a ccelera- 
tion" transformations (four parameters-see Penrose & MacCallum, 1972 for 
comment on these). Hence the conformal symmetry group of MinkowskJ 
space-time is a 15-parameter group-the conformal group previously referred 
to in Sec. 1; ~o a and Foab together define the 10-parameter Poincar~ group, 
which is the metric-preserving subgroup of the conformal group. 

4. Spinor Methods.-Minkowski Space-Time 

Let now ~a be a null conformal Killing vector; then it can be written in 
spinor terms thus: ~a = coA ~A'.  Then 

Va~b = VAA'((.OB~B') = eeABeA'B'  + FABA'B'  (4.1) 

translating the first of equations (3.1) into spinors. But Fat, = FIab] ; therefore 
there exists a symmetric spinor gab = #(AB) such that 

Tab = FABA'B'  = eA'B'IdAB + eAB~2A'B ' (4.2) 
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also, from (3.t), it follows that 

V (A '(A ¢oB)~"-B' ) = 0 

whieh implies the existence of a constant spinor rrA' (Penrose, 1967) such 
that: 

with complex conjugate 

and 

It follows that 

and 

V AA'COB =--ieABTr A, 

V A A ' ~ B '  = i6A'B'~ A 

V AA'TiB' = 0 

gAB = i¢O(A ~B) 

~b = (i/2), ( w C ~ c  - w C'Trc') 

Further, using (4.3), (4.4), (4.5), 

V AA'  ~ = ~A TrA ' 

and hence Pa = ~A lrA' is a null vector. 
Collecting these results together, for a null conformal Killing vector in 

Minkowski space-time, the following relationships hold: 

~a = ¢oA (~A' 

¢) = ( i /2)(¢oc~c - ~C 'nc , ) ,  

NAb = CA,B,/IAB + CABflA'B' , 

Pa = ~A rrA' 

where n A, = (i/2) VBA 'Ca) B 

where ;tAB = i6O(A ~B) 

141 

The spinor equivalent equations of (3.1) can then be written thus: 

V AA ' (O B = --i~AB ~7 A, 

VAA'~ = ~A IrA' 

V AA'#BC = eA (BVC) 7r A' 

V AA'ff  B' = 0 

(4.3) 

(4.4) 

(4.s) 

(4.6) 

(4.7) 

(4.8) 

(4.10) 

(4.9) 
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A straightforward calculation shows also that the equations (3.2) can be 
written in terms of # ,  4, gAB, 7rA' as follows: 

021A = 030 A -- ixAB'TrOB , 

41 = 4o + ~oA % A ' x  aA' 

#lAB = gtOAB + XCA ~'~oB)Tr~ 

lrlA, = 7rOA, 

(4.11) 

It is evident that in spinor terms the conformal Killing transport equations 
in Minkowski space-time for a null conformal Killing vector are completely 
determined from a knowledge of the corresponding spinor ~ and its 
covariant derivative, which gives the spinor 7rA', since the quantities 4, gAB 
(hence Fat,), and pa can be defined in terms of these; for this reason co a is 
called a conformal Killing spinor. The vector Pa and the tensor Fab have the 
same form as the momentum and angular momentum tensors, respectively, 
of a system of particles in Minkowski space-time (Penrose & MacCatlum, 
1972). 

5. Conformal Rescalings 

Under a conformal rescaling of the metric ~Tab, i.e., ~Tab --> ~ab = gob, where 
gab = ~22~a~, the conformal Killing vector ~a is invariant: ~a ---> ~a = ~a Also, 
the conformal Killing transport equations are covariant, so that 

Fab "+Fab = ~22(Fab + 23'lamb]) 

¢-.- 4; = 4 + 3 , d  

Pa ~ Pa = Pa + 7cFa c + "ra4 

+ ~bra,~ ~ - ¼ % 7 ~ a  

where 
"/a = ~'2-1Va ~'~ 

Since r~ab is a fiat metric, the metric gab is conformally flat, i.e., the Weyl 
tensor Cabca = 0, but the curvature tensor Ro~ca is nonzero and can in fact 
be expressed in terms of the metric tensor and the tensor Pab. The conformal 
Killing transport equations are therefore [from (2.5)] 

~a( Va~b ) = ha(Fat, + 4gab) 

na(Va4)  = na{pa + Pad~ d ) 
(5.1) 

rla(VaFbc) = rfl(2Patb~cl -- 2gatbP~l) 

rla{Vapb} = ~a(4PaO + PaaFo a) 
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These equations can also be expressed in terms of the spinors introduced 
earlier, thus if ~a = o~A ~A' ,  the equation (4.3) is still valid, but now rrA' is 
not a constant spinor, and in fact 

V AA'TTB' = iPABA'B'W B (5 .2 )  

Tile equations (5.1) then become, in terms of ~A and 7rA', 

A' ~AA'{VAA,O~B} = T[ A {--ieABr(A,} 

~?AA'{ V AA '¢  } = ~IAA'£ff A g A' + P ABA ' B 'O~B ~B'  } (5 .3 )  

AA' AA' , -- ' 
{VAA'laBC} =77 {ffA 6A(BffC) + iCO(BPIA[C)A'D 'C°D }* 

~AA'£ V AA,ff B, } = ~AA'{iPABA,B,o~B } 

~a, ¢, Fat,, Pa have the same spinor form as before, and it therefore follows 
that if ~a is null, in a conformally flat space-time, Pa is null. 

The equations (4.3) and (5.2) are conformally covariant with 

~ 4  =~0 A 

and 

~rA' = ff A' + i'YBA '6°B 

1 _ _  i 

PA B = PA B + ½7tiBiA ~d + ~ T A c w B  w ¢ (5.4) 

The spinor equations (5.3) cannot be maintained in a space-time which is not 
conformally flat, since then there is a consistency condition on ~ a  

V~ ( C v )~B ~o A) = _ o~X ~ xABC 

where a~tABCD is the Weyl spinor. The equations (5.3) are consistent if and 
only if o~X'~'XABC = O. 

6. Appl icat ions  in Twis tor  Theory  

The equations (4.3), (4.5), and (5.2) are of interest in twistor theory-the 
equation 7A ' (  A ~o B) = 0, which holds fin Minkowski space-time, is called the 
twistor equation: the spinor field ~ then completely defines a twistor Z% 
since the twistor equation has the general solution 

c~1 -~ = O~o A - ix  AA n ~: 

from the first equation of (4.11), and the twistor Z ~ is represented by the 
spinor pair (o~ A, 7rA') (Penrose & MacCallum, 1972). 

In local twistor theory, a twistor covariant derivative Vp o is introduced; 
the spinor parts of this derivative are of the form of the equations (4.3) and 
(5.2). It can easily be shown then that the local twistor covariant derivative 
is integrable in Minkowski space-time and that the equation Vp ~Z a = 0 is 

* The notation here is that the index A, being contained thus: [A l, is to be excluded 
from the symmetry operation. 
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conformally invariant (Dighton, 1974). The spinor equations (4.3) and (5.2) 
can thus be used to define the operat ion of  local twistor t ransport ,  which 
has the same tensor form as the operat ion of  conformal Killing transport  in 
a conformally flat space-time. This will be enlarged upon in a later paper. 
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